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Abstract 

 

Myriad unexplored mechanisms potentially drive ecolog-

ical speciation and could help explain global variation in 

diversity. Here, we develop a novel hypothesis focused 

on variation in biotic, chemical, and physical properties 

of soil as a factor contributing to diversification in 

communities of plants and animals. The Soil Mosaic 

Hypothesis (SMH) suggests that differences in soil 

attributes can affect intraspecific variation in phyto-

chemistry, leading to cascading ecological and 

evolutionary effects on higher trophic levels. To illustrate 

the potential importance of the SMH, we examine three 

underlying ideas: (1) plant species and species assem-

blages shift over time, exposing them to novel soil 

environments, which can lead to ge netic differentiation;

 

 

 

(2) differences in soil properties can alter phytochemistry 

via plasticity and local adaptation; (3) phytochemistry 

can drive herbivore diversification via divergent natural 

selection (i.e. ecological speciation). The SMH provides 

insight into the process of diversification in a variety of 

landscapes and at a variety of scales and may inform 

analyses of diversification at local, regional, and global 

scales.  

 

Keywords: soil mosaics, diversification, phyto-

chemistry, plant-animal interactions, resource avail-

ability, ecological speciation.   
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Introduction 

 

The idea that ecological interactions can influence 

evolution has been a major component of evolutionary 

theory since Darwin proposed natural selection (Darwin 

1859), and it is clear that ecologically-based divergent 

natural selection is an important model of speciation 

(reviewed by Rundle and Nosil 2005, Nosil 2012). 

Ecological speciation occurs when populations are 

exposed to contrasting environments and ecologically-

based divergent natural selection promotes (either 

directly or indirectly) the evolution of reproductive 

isolation. Divergent selection can result in differences in 

morphology, behavior, or other phenotypes, potentially 

leading to genetic isolation between populations com-

prised of ecologically specialized individuals (Schluter 

and McPhail 1992, Rundle and Nosil 2005, Matsubayashi 

et al. 2010, Soria-Carrasco et al. 2014). Research on 

ecological speciation has benefited from detailed studies 

of well-understood populations or taxa associated with 

different resources or habitats (e.g., Schluter and McPhail 

1992,  Rundle et al. 2000,  Nosil et al. 2008, 

Matsubayashi et al. 2010, Nosil 2012, Soria-Carrasco et 

al. 2014), but there are still many unexplored axes of 

ecological variation that potentially contribute to 

diversification (Coley et al. 1985, Thompson 2005, 

Whitham et al. 2008, Dyer et al. 2014). Here, we consider 

a previously understudied potential source of divergent 

natural selection: variation in soils and associated effects 

on phytochemistry and plant and animal community 

structure. 

 The Soil Mosaic Hypothesis (SMH) posits that 

differences in soil properties (i.e. biotic, chemical and 

physical factors) can affect individual variation in plant 

primary and secondary metabolites, yielding a highly 

variable phytochemical landscape (sensu Hunter 2016) 

and leading to cascading ecological and evolutionary 

effects on autotroph and consumer trophic levels. Soil 

heterogeneity could lead by direct and indirect mech-

anisms to reproductive isolation in plant and herbivore 

populations. A direct mechanism could be, for example, 

adaptation by herbivores to plant populations with 

divergent phenology causing a shift in herbivore 

phenology (emergence time or peak abundance) that 

immediately isolates consumer populations. A less direct 

mechanism could be local adaptation to phytochemistry, 

and associated selection against hybrids that are 

maladapted to either of the chemical profiles experienced 

by the parents. The SMH is not entirely novel: in addition 

to theories of ecological speciation and host-associated 

differentiation (Stireman et al. 2005), the SMH can be 

considered a corollary to the following well-established 

theories: i) coevolution (Ehrlich and Raven 1964, 

Berenbaum and Feeny 1981, Agrawal et al. 2012), ii) the 

geographic mosaic (Thompson 1999, Thompson 2005), 

iii) plant defense theory (Bryant et al. 1983, Coley et al. 

1985, Stamp 2003, Massad et al. 2011, Smilanich et al. 

2016), iv) effects of environmental heterogeneity on 

communities and ecosystems (Ricklefs 1977, Whitham et 

al. 2006, 2008), v) the phytochemical landscape (Hunter 

2016), and vi) plant-soil feedbacks (van Breeman and 

Finzi 1998, van der Putten et al. 2013, Schweitzer et al. 

2014). The utility of the SMH is that it utilizes key 

components of existing theory that are usually limited in 

scope to average levels of chemical defense and bi-

trophic interactions to provide a focused, testable frame-

work that includes a new perspective on phytochemical 

diversity, multi-trophic interactions, and abiotic selective 

drivers of diversification. Natural systems are adaptive 

landscapes of complex community dynamics. The SMH 

integrates both below- and above-ground processes when 

assessing patterns of ecological divergence speciation. 

We examine three underlying postulates (Figure 1): (1) 

plant species and communities are exposed to diverse soil 

environments across multiple spatial and temporal scales, 

which can lead to divergence in plant populations; (2) 

differences in soil properties can alter plant primary and 

secondary metabolites; and (3) variation in phyto-

chemistry can drive herbivore diversification via 

ecological speciation at fine geographic scales.  

While these postulates could be used to help 

understand the link between soils, phytochemistry, and 

diversification in any ecosystem, such mechanistic 

relationships may be particularly evident in regions that 

encompass extreme habitat variation (e.g., serpentine 

soils, white-sands versus clay soils, dry versus wet 

tropical forests, or mountains) and which have a unique 

combination of soil diversity, movement dynamics, and 

biotic interactions. Below we will discuss each of the 

three aspects of the SMH to illuminate the process by 

which consumers adapt to phytochemical variation 

driven by changes in soil chemical and physical 

properties.   

 

1. Plants disperse to novel soil environments. 

 

Because the chemical and physical properties of soil 

are influenced by associated climate, parent material, 

topography, time, and biotic communities (Laliberté et al. 

2013, van der Putten et al. 2013), distinct soil types can 

occur in close proximity, leading to a soil mosaic (Sollins 

et al. 1994). Soil mosaics characterize many landscapes 

at different spatial scales, and soil formation models 

predict that tropical soils in particular should have 

extreme heterogeneity in soil properties (e.g., Jenny 

1980). 

When plant ranges shift due to climatic changes or 

other factors, populations are likely to encounter novel 

soils because of the heterogeneity of most soil 

landscapes. Ecological processes that promote dispersal 

will also lead to an increased likelihood that a plant will 

disperse onto a soil with attributes that are different from
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Figure 1. A graphical model of the Soil Mosaic 

Hypothesis: 1) Soils are heterogeneous and plant 

populations move; 2) Soils affect 

phytochemistry, creating subpopulations with 

different chemistry; 3) Phytochemistry affects 

herbivore diversification. The first column shows 

that plants (open circles) move across a landscape 

over time. The second column shows how soils 

with distinct characteristics (shaded regions) 

influence plant phytochemistry. Plastic changes 

in phytochemistry are represented by different 

symbols within each circle – these changes can 

also be followed by genetic assimilation. The 

third column shows how herbivores track the 

movement of plant subpopulations over time. 

The pattern on the wings of the herbivores 

represents divergent characters that are linked to 

adaptations to unique phytochemical profiles of 

associated host plants. 

 

 

 

 

 

the parent plant. Neotropical trees, for example, often 

experience long distance dispersal (Ward et al. 2005). 

The lowland tapir, Tapirus terrestris, acts as an important 

long distance disperser of the tropical palm Maximiliana 

maripa. Tapirs disperse palm seeds as far away as 2 km 

from parent trees, increasing survival rates of seeds to 

98% for those that are dispersed compared to 17% for 

seeds close to parent trees (Fragoso 1997; Fragoso et al. 

2003). Long distance dispersal events increase the 

probability of offspring shifting to a different soil type 

than the parent and could result in offspring with different 

phytochemical or nutritional properties from their 

parents, leading to increased morphological and genetic 

divergence (e.g., Barbosa et al. 2013, Misiewicz and Fine 

2014).  

 

2. Soils affect phytochemistry.  

 

Changes in biotic and abiotic factors, including soil 

microbes and nutrients, are known to cause significant 

changes in plant chemistry, and the magnitude of these 

changes are likely to affect many biotic interactions that 

are mediated by chemistry (Hunter and Price 1992, van 

Breeman and Finzi 1998, Dyer et al. 2004, Massad and 

Dyer 2010). There is a vast literature on the plasticity of 

plant secondary metabolites, and while there is little 

consensus on the directions and magnitudes of these 

responses to changes in soil nutrients, there is ample 

evidence of large shifts in phytochemical profiles in 

response to soil nutrient variation (reviewed by Massad et 

al. 2012). 

Phytochemical diversity maintains plant function and 

fitness across diverse environments, affecting herbivore 

communities (Richards et al. 2015, Glassmire et al. 2016) 

and habitat specialization by plants (Fine et al. 2013). 

Phytochemical plasticity could be more beneficial when 

there are resource pulses or outbreaks of herbivory in 

resource-limited environments, and empirical studies 

have shown that plants allocate more resources to defense 

versus growth under such conditions to prevent the loss 

of leaf tissue, which is costly to replace (reviewed in 

Endara & Coley 2011). Thus, the adaptive nature of 

phytochemical plasticity can depend on resource avail-

ability and the presence of biotic interactions (Coley et 

al. 1985, Dyer et al. 2004, Hunter 2016). Similarly, the 

growth-defense trade-off hypothesis suggests plants have 

different phytochemical defense strategies across soil 

gradients (Coley et al. 1985), potentially promoting soil 

specialization and adaptation over evolutionary time 

(Fine et al. 2013).  

 Thus, soil mosaics can provide an adaptive landscape 

promoting edaphic specialization and plant 

diversification. For example, patterns of spatial genetic 

structure in the tropical tree Protium subserratum 

(Burseracae) in the Ducke Reserve Brazil are 

significantly influenced by soil type, which is highly 

heterogeneous, with soil clay composition ranging from 

2% to 80% in a 250 meter area (Barbosa et al. 2013). 

Edaphic specialization has been posited as a mechanism 

of diversification for multiple plant lineages; two 

prominent examples are diversification of Protieae 

species (Burseraceae) shifting from clay to sand soils 
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(Fine et al. 2005, Fine et al. 2014) and endemism of 

streptanthoid species (Brassicaceae) transitioning from 

bare to serpentine soils (Cacho and Strauss 2014). 

Furthermore, studies have shown that some populations 

of Mimulus guttatus monkeyflowers (Family: Phrym-

aceae) have adapted to the copper-rich soils near copper 

mines, resulting in ecological speciation (Macnair and 

Christie 1983). 

 

3. Phytochemistry affects herbivore diversity. 

 

While diversification in herbivorous insects is often 

thought to involve shifts in host plant use (e.g., Powell et 

al. 2013, Soria-Carrasco et al. 2014), recent evidence 

from a diverse tropical system raises the possibility that 

diversification can also occur without host shifts and also 

without major geographic barriers, supporting the 

hypothesis that intraspecific variation in phytochemistry 

may play a role in insect diversification at relatively small 

spatial scales (Wilson et al. 2012, Glassmire et al. 2016). 

Furthermore, intraspecific variation in edaphic-

associated phytochemistry sheds light on the documented 

phenomenon that distinct insect communities are 

associated with soil ecotypes, as in P. subserratum (Fine 

et al. 2013). It is well known that phytochemical variation 

can influence insect herbivores by affecting oviposition 

preference (Carlsson et al. 2011), larval performance, 

mortality (Richards et al. 2010), and the ability of an 

herbivore to defend itself against predators and 

parasitoids (Smilanich et al. 2009). The SMH suggests 

that as plants experience new soil environments and 

respond with altered phytochemical properties, assoc-

iated herbivore communities will experience strong 

selection pressure based on these new phytochemical 

environments, which can lead to diversification and 

speciation. Richards et al. (2015) found that 

phytochemical variation affects entire host-associated 

communities, including the diet breadth and diversity of 

herbivores.   

 

Future Studies 

 

The three main tenets of the SMH described here were 

inspired by pondering the theoretical framework of the 

phytochemical landscape (Hunter 2016) as well as 

considering our own work showing evidence of rapid 

diversification within one genus of herbivores (Eois, 

Geometridae: Larentiinae) that includes multiple sister 

species consuming the same host plant species in close 

geographic proximity (Wilson et al. 2012, Glassmire et 

al. 2016). The SMH incorporates a combination of 

ecological and evolutionary processes associated with 

plants colonizing novel soils, followed by diversification 

of taxa at higher trophic levels. Below we provide several 

examples of future studies that would test specific 

hypotheses generated by the SMH to elucidate how soil 

interacts in a multi-trophic framework. 

First, transplant studies should be conducted to 

examine how differences in soil nutrient availability 

influence phytochemical profiles, and how this impacts 

performance of the associated arthropod communities 

(Fine et al. 2013). These studies should be accompanied 

by feeding assays to examine herbivore preference and 

performance on phytochemically distinct plants. Second, 

controlled experiments should investigate the mech-

anisms by which soil resource availability affects 

phytochemical plasticity in the presence of natural 

enemies. This would involve a fully-crossed exper-

imental design including manipulated abiotic (addition of 

soil resources) and biotic factors (exclusion of herbivores 

and natural enemies). Associated with these manipu-

lations of soil resources, the richness and abundance of 

soil biotic properties could be manipulated to examine 

the influence of soil biotic diversity on phytochemical 

diversity. For example, one could experimentally alter 

the diversity of arbuscular mycorrhizal fungi, bacteria, 

and soil arthropods, and quantify differences in phyto-

chemistry. One important response variable for both 

types of soil manipulation experiments is the concen-

tration of individual secondary metabolites, allowing for 

responses to these key questions: 1) How important are 

soil resources, arthropod communities, and the inter-

action between these factors for structuring plant 

secondary metabolomes? 2) What are the norms of 

reaction for individual secondary metabolites and 

phytochemical diversity in response to soil nutrients and 

arthropods? 3) Are any metabolites fixed with respect to 

variation in soil and arthropods? In experiments of this 

kind, arthropod communities can both be manipulated as 

treatments and measured as response variables, including 

behavior (e.g., oviposition preferences) of focal 

herbivores. 

Finally, as an extension of the SMH, future studies 

could investigate the possibility of plant defensive 

profiles becoming fixed by genetic assimilation 

(Waddington 1953, Crispo 2007).  If the colonization of 

a novel edaphic environment results in the develop-

mentally-plastic production of a distinct phytochemical 

profile that is favored by natural selection, theory 

suggests that the novel phenotype could eventually 

become fixed because plasticity to produce that 

phenotype would be selected against at that location.  An 

interesting outcome of this process would be the retention 

of phytochemical diversity at the species or meta-

population scale (Figure 1), even in the face of range 

shifts associated with climatic fluctuations, since the 

previously plastic phenotype is fixed.  The conversion 

from plasticity to fixed phytochemical diversity also 

opens the possibility for another mechanistic component 

of classic coevolutionary dynamics between plants and 
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herbivores.  While the potential importance of genetic 

assimilation for micro and macroevolutionary processes 

is well recognized (West-Eberhard 2003, Ehrenreich and 

Pfennig 2016), we know very little about the potential for 

assimilation to affect phytochemical phenotypes or 

associated arthropod communities. Perhaps the best 

systems for utilizing this approach would be well-

resolved foundation species, such as Populus, for which 

there are documented networks of interacting soil 

microbes and herbivore communities, as well as 

documented effects from genes to ecosystems (Whitham 

et al. 2006, 2008, Lau et al. 2016). 

 

Conclusion 

 

Variation in phytochemical profiles can arise in plants 

following the colonization of novel soil types (Fine et al. 

2006, Fine et al. 2013, Cacho and Strauss 2014), allowing 

for phytochemically-associated adaptation and diverg-

ence to occur in herbivores at a fine geographic scale 

(Glassmire et al. 2016). Future studies investigating 

previously unrecognized mechanisms of diversification, 

such as the processes comprising the SMH, will shed 

light on the origin and maintenance of biodiversity. 

Testing this hypothesis should be a part of the general 

goal to understand the extent to which ecological 

processes influence diversification in a multi-trophic 

framework. 
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