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Abstract This study investigates complex effects of

parasitoid infection on herbivore diet choice. Specifically,

we examine how immunological resistance, parasitoid

infection stage, and parasitoid taxonomic identity affect the

pharmacophagous behavior of the polyphagous caterpillar,

Grammia incorrupta (Arctiidae). Using a combination of

lab and field experiments, we test the caterpillar’s phar-

macophagous response to pyrrolizidine alkaloids (PAs)

over the course of parasitoid infection, as well as the effect

of dietary PAs on the caterpillar’s immunological response.

Previous work from other systems gave the prediction that

dietary PAs would be detrimental to the immune response

and thus less acceptable to feeding early in the infection,

when encapsulation of the parasitoid is most crucial. We

found that the feeding acceptability of PAs was indeed low

for caterpillars with early-stage parasitoid infections;

however, this was not explained by PA interference with

immune function. When allowed to choose among three

host plant species, individuals harboring early-stage para-

sitoids increased their consumption of a nutritious plant

containing antioxidants. This result was driven by wasp-

parasitized caterpillars, whereas fly-parasitized caterpillars

increased their consumption of plants containing iridoid

glycosides. Individuals in the later time phase of infection

exhibited an increase in PA intake that was consistent with

previously reported self-medication behavior during late-

stage parasitoid infection. This study reveals the depth of

complexity and the dynamic nature of herbivore host plant

choice, and underscores the importance of considering

multitrophic interactions when studying insect diet choice.

Keywords Self-medication � Herbivory � Behavior �
Tritrophic � Chemistry

Introduction

Host plant selection by herbivorous insects is typically

specialized and influenced by a multitude of ecological

factors (Bernays and Chapman 1994; Schoonhoven 2005).

The most well-studied factor, plant chemistry, influences

host plant selection by providing oviposition and feeding

cues (e.g., Da Costa and Jones 1971; Raybould and Moyes

2001; Macel and Vrieling 2003; Nieminen et al. 2003;

Talsma et al. 2008), as well as deterring feeding and

causing toxicity to the herbivore (e.g., Fraenkel 1953,

1959; Dethier 1954; Whittaker and Feeny 1971; Feeny

1975; Feeny et al. 1976; Rhoades and Cates 1976; Bowers

and Puttick 1988; Camara 1997; Dyer et al. 2003). While

the influence of plant chemistry is important, studying host

plant selection in a multitrophic context captures important

direct and indirect effects that can provide increased

explanatory power (Price et al. 1980; Bernays and Graham

1988; Singer and Stireman 2005; Schmitz 2008). In par-

ticular, including natural enemies in the study of herbivore

host plant selection has stimulated a body of research

investigating how plant chemistry and natural enemies

interact to influence host plant choice (Mueller 1983; Dyer

1995; Lill et al. 2002; Denno et al. 2003; Kursar et al.

2006; Barbosa and Caldas 2007; Singer et al. 2009). Given

the influence of both trophic levels, a necessary goal for

host plant selection studies is to elucidate the mechanisms
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by which plant chemistry and natural enemies interact to

determine host plant choice.

Parasitism by wasps and flies is an important factor

determining host plant choice (Karban and English-Loeb

1997; Singer et al. 2009). For example, Karban and

English-Loeb (1997) found that, when parasitized, indi-

viduals of the polyphagous arctiid caterpillar Platyprepia

virginalis prefer to eat poison hemlock, resulting in a

greater tolerance of parasitism. Similarly, host plant

selection by another polyphagous arctiid caterpillar,

Grammia incorrupta, is partly dependent upon whether it is

parasitized. This caterpillar species exhibits pharmaco-

phagy with respect to pyrrolizidine alkaloids (PAs)

(Bernays et al. 2002). Pharmacophagy is a feeding behavior

whereby herbivores preferentially ingest non-nutritive

substances (Boppre 1984), typically consuming plant sec-

ondary metabolites from specific plants for defense,

courtship, or both (e.g., Trigo et al. 1996; Tallamy et al.

2000; Wee et al. 2007). Despite numerous studies detailing

the feeding plasticity of herbivorous insects with respect to

plant nutrients and chemical defenses (reviewed in Behmer

2009; Mooney and Agrawal 2008), investigations of plas-

ticity in pharmacophagy are rare. An exception concerns

self-medication behavior by G. incorrupta caterpillars,

which increase their intake of PAs when parasitized, a form

of pharmacophagy that improves their chances of surviving

parasitoid infection (Singer et al. 2009).

An important process that links plant chemistry to par-

asitoid success is the insect immune response. The immune

response targets foreign objects inside the hemocoel and

functions to defend against parasitoids, parasites, and

pathogens. It is one of the most effective defenses that

insects have against parasitic wasps and flies (Godfray

1994; Beckage 2008; Smilanich et al. 2009b). Several

studies have investigated the effects of host plant chemistry

on immune function in herbivorous insects (Benrey and

Denno 1997; Turlings and Benrey 1998; Hunter 2003;

Smilanich et al. 2009a), showing that the effects can be

positive, negative, or neutral (Ojala et al. 2005; Kapari

et al. 2006; Haviola et al. 2007; Klemola et al. 2007, 2008;

Lee et al. 2008; Smilanich et al. 2009a; Bukovinszky et al.

2009). Nutrients (e.g., protein) can enhance encapsulation

and lysozyme-like antibacterial activity, while other

immune system components like phenoloxidase activity

may not be affected (Lee et al. 2006, 2008; Povey et al.

2009; Srygley et al. 2009). Ingestion of certain plant sec-

ondary metabolites (e.g., iridoid glycosides) can diminish

the immune response by directly interfering with melan-

ization (Smilanich et al. 2009a), whereas other metabolites

(e.g., hydrolyzable tannins) may act indirectly on immunity

via reductions in herbivore performance (i.e., declines in

host quality from the perspective of the parasitoid) (Haviola

et al. 2007; Yang et al. 2008). Alternatively, antioxidant

activity associated with carotenoids, phenolics, and syn-

thetic chemicals can enhance insect immunity by putatively

reducing harmful oxygen species (Ojala et al. 2005;

Buyukguzel 2009).

The observation that host plant chemistry can affect the

outcome of parasitism in diverse ways suggests that

adaptive responses to parasitism may be as diverse. Given

the nutritional and chemical diversity of plants, it seems

likely that host switching herbivores can optimize fitness in

the face of tritrophic interactions by regulating their intake

of particular chemicals or nutrients based on subtle dif-

ferences in their physiological condition. Grazing cater-

pillars that were shown to self-medicate against parasitoid

infection exhibited a high degree of variation in the self-

medication response (Singer et al. 2009). One explanation

for the observed variation is that physiological differences

exist among parasitized individuals which influence their

feeding preference for PAs. In this study, we investigate

how three sources of variation, the immunological resis-

tance, the stage of parasitoid infection, and the type of

parasitoid (wasp or fly) influence dietary choice in G. in-

corrupta. Based on evidence that high concentrations of

plant secondary metabolites can compromise the immune

system (Smilanich et al. 2009a), we expect caterpillars to

avoid PAs early in the infection when the ability of the

immune system to encapsulate the parasitoid larva is most

crucial. Growth and survival costs associated with ingest-

ing high concentrations of PAs (Singer et al. 2009) lead to

the prediction that caterpillars will increase PA intake as an

antiparasitoid defense only when the immune response

fails.

Methods

Study system

Caterpillars. Grammia incorrupta (formerly G. geneura)

(Lepidoptera: Arctiidae) caterpillars feed on over 80 spe-

cies of plants from nearly 50 phylogenetically disparate

plant families (Singer and Stireman 2001; Singer et al.

2002). These herbivores eat mainly forbs in grassland and

savanna habitats of the southwestern USA and northwest-

ern Mexico (Singer 2001). Unlike some generalists that can

feed on a variety of plants, but whose maternal choice

confines individuals to a single host plant for the duration

of their larval stage, G. incorrupta is a grazing generalist,

regularly moving between plants and mixing its diet

(Singer et al. 2002). Grammia incorrupta larvae typically

go through 6–8 instars. The frequency of mortality from

parasitoids of field-collected G. incorrupta is highly vari-

able (average = 15%), with the majority of these attacks

coming from various species of tachinid flies, including
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Exorista mella and several Chetogena species (Stireman

and Singer 2002). The most numerically dominant para-

sitoid wasp of G. incorrupa is Cotesia nr. phobetri, an

invalid species that has only been reared from G. incor-

rupta and thus appears to be host specific (Stireman and

Singer 2002).

Parasitoids. Chetogena edwardsi and C. tachinomoides

(Diptera: Tachinidae) were used for parasitism in labora-

tory experiments. Both species have broad host ranges on

macrolepidopteran larvae (Stireman and Singer 2002).

Flies were collected from natural populations of G. in-

corrupta caterpillars in April 2009. Previous tritrophic

work in this system was done mostly with Exorista mella

(Diptera: Tachinidae) (Singer and Stireman 2003; Singer

et al. 2009). Chetogena and E. mella are closely related

(Stireman 2002) and are likely to share many life history

traits relevant to host parasitoid interactions. Like E. mella,

Chetogena females oviposit macrotype eggs onto the cat-

erpillar cuticle. Eggs hatch between 48 and 60 h after

oviposition, at which time the tachinid larva burrows

through the cuticle and into the caterpillar hemocoel. The

development time of the Chetogena larvae averaged

10 ± 3 days under laboratory conditions.

Flies were kept in a plexiglass terrarium with water and

sugar granules readily available. To maintain the colony,

3–5 seventh-instar G. incorrupta caterpillars were parasit-

ized daily. Mating of adult flies was not controlled.

Experimental overview

We performed three laboratory experiments and two

experiments with both a lab and a field component. Lab

experiments were performed at Wesleyan University in the

fall of 2008 and spring of 2009. These experiments

addressed: (1) the feeding response to PAs of parasitized

G. incorrupta at different time phases of the parasitoid

infection, (2) the feeding response to PAs of G. incorrupta

which were immune challenged with injected silica beads,

and (3) the effects of PAs on the immune response of

G. incorrupta. The immune response was measured using a

standardized immune assay where the deposition of mela-

nin on injected silica beads is quantified (Lavine and

Beckage 1996; Smilanich et al. 2009b). The feeding

response to PAs was measured using a no-choice feeding

assay.

Field/lab experiments took place in and around Tucson,

AZ, USA in the spring of 2007 and 2009. Caterpillars were

collected from field sites in the area and brought back to

the lab at the University of Arizona for manipulation and

observation. Field experiments addressed (1) the influence

of natural parasitism on PA consumption, and (2) the

influence of natural parasitism on host plant choice

between three chemically distinct host plants.

Laboratory experiments

Feeding response to PAs after parasitism

In this experiment, we measured the PA feeding response

of G. incorrupta caterpillars at different time points fol-

lowing parasitism by tachinid flies. The specific PA used

for all experiments described here was monocrotaline

(Sigma–Aldrich). The PA monocrotaline was dissolved in

95% ethanol to produce a 0.1 mMol PA solution. This

concentration is known from previous experiments to

stimulate feeding (Bernays et al. 2002). The PA solution

was pipetted onto 2.4 cm diameter glass fiber discs and

allowed to completely dry. The discs were then weighed

and pinned onto the inside wall of a plastic 167.2 ml plastic

cup within reach of the caterpillars. Since we were spe-

cifically interested in whether feeding behavior changes

over the course of the parasitoid infection, parasitized

caterpillars were assigned to one of two groups: an early-

stage infection group or a late-stage infection group. At the

beginning of the seventh instar, individuals of G. incor-

rupta were parasitized by a single female tachinid fly. The

number of eggs oviposited ranged between 1 and 3.

Because eggs are oviposited singly onto the caterpillar’s

integument, we were able to count and manipulate the

number of eggs each caterpillar received. A subset of

caterpillars was assigned to the PA feeding assay 48 h after

parasitoid oviposition to measure PA feeding of caterpillars

at an early stage of the infection. Another subset of para-

sitized caterpillars was assigned to the PA feeding assay

96 h after parasitoid oviposition to measure the PA feeding

response at a later stage of the infection. To act as a control

group, nonparasitized caterpillars of the same develop-

mental stage were paired with parasitized caterpillars in

both early- and late-stage feeding assays. After 24 h, the

mass of the PA-treated glass fiber disc consumed was

recorded for each replicate. Data were analyzed in SAS

(SAS Institute 2008) using two-way ANOVA (PROC

GLM) with the mass of the glass fiber disc consumed as the

response variable and treatment groups (parasitized vs.

unparasitized) and time phase of infection (early vs. late) as

the predictor variables. This same analysis was performed

separately for individuals with one egg and two eggs. All

caterpillars were monitored until parasitoids emerged.

Individuals were excluded if no parasitoid emerged. Dif-

ferences between means were identified using Tukey’s

multiple range test with a = 0.05.

Immune assay

In the following experiments, we were interested in testing

the strength of the immune response and the feeding

behavior of immune-challenged caterpillars. By injecting
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egg-sized foreign bodies into the caterpillars, we obtained a

standardized measure of immunocompetence. Caterpillars

were injected with 5–10 red silica beads as a proxy for

parasitism (Lavine and Beckage 1996; Lovallo et al. 2002).

This technique has been used widely and has been shown

to accurately quantify immune capacity in insects (Gorman

et al. 1996; Rantala and Roff 2007). The immune response

was assessed by quantifying the caterpillar tissue melan-

ization of silica beads injected into the caterpillars

(Smilanich et al. 2009a, b).

Feeding response to PAs after immune challenge

A 24 h feeding assay using PA-treated glass fiber discs was

used to measure the PA feeding response of immune-

challenged G. incorrupta caterpillars. The PA feeding

assay described above was used to measure PA feeding

responses. Individuals at the second day of the seventh

instar were taken from three different families and ran-

domly assigned to one of three groups: bead injection,

sham injection, or control. Caterpillars in the bead injection

group were injected with silica beads. For the sham

injection, individuals were injected with Ringer’s solution

without the beads in order to separate the response to the

needle injury from the immune response to the beads.

Control individuals were not injected. Twenty individuals

from three different families were assigned to the bead-

injected, sham-injected, and control groups. The total

amount consumed was calculated by subtracting the initial

dry mass of the disc from the final dry mass at the end of

the 24 h feeding assay. The data were analyzed in SAS

using ANOVA (PROC GLM), with the mass of the glass

fiber disc consumed used as the response variable and

treatment (bead, sham, control) used as the predictor var-

iable. Caterpillar family was added to the model as a ran-

dom interaction variable. Differences between means were

determined using Tukey’s multiple range test with

a = 0.05.

Effects of PAs on the immune response

For this experiment, we measured the immune response of

individuals feeding on a standard rearing diet (Singer et al.

2009) with PAs added at either high (0.1% dry weight) or

low (0.01% dry weight) concentrations. The concentrations

of PAs reflect the natural range that individuals of G. in-

corrupta encounter in PA-containing plants in nature

(Hartmann et al. 2004). At the beginning of their final

instar (seventh), 90 individuals (30 per treatment) from

three different families were randomly assigned to either a

high, a low, or a control diet with no PAs added. Each

treatment received ten individuals from each family such

that the families were evenly dispersed across treatments.

Caterpillars were reared individually in 162.7 ml plastic

cups. At the second day of the seventh instar, individuals

were injected with 5–10 glass beads and allowed to

respond for 24 h before dissection (Smilanich et al. 2009a,

b). To retrieve the beads, caterpillars were dissected in

Ringer’s solution and melanization was compared between

treatments by photographing beads using a camera moun-

ted on a dissection microscope (Carl Zeiss Discovery V.8,

AxioCam Software). All photographs were taken at 809

magnification. Because the beads were dyed red before

injecting them into the caterpillars, we were able to

quantify the magnitude of melanization by measuring the

red value (r value) of each bead. The r value is a numerical

measure of the red value of an image on a scale ranging

from 0 to 255, where 0 is pure gray and 255 is pure red.

The lower the r value, the darker the bead, indicating

increasing levels of melanization. Using Adobe Photoshop

(version 6.0), the r value was obtained for each bead within

a caterpillar, and these values were averaged to provide an

r value score for each individual caterpillar. The mean

r value was transformed into a percentage of melanization

[1-(r value/maximum r value)] for ease of interpretation

in graphs. Data were analyzed in SAS using ANOVA

(PROC GLM), with r value used as the response variable

and diet treatment (control, high PA, low PA) used as the

predictor variable. Caterpillar family was also added to the

model as a random interaction variable. Differences

between means were determined using Tukey’s multiple

range test with a = 0.05.

Field/lab experiments

Feeding response to PAs after natural parasitism

To measure the PA feeding response of naturally parasit-

ized caterpillars, we subjected field-collected G. incorrupta

caterpillars to a PA feeding assay in the laboratory and

determined whether individuals were parasitized using

post-assay dissections. First, we collected 120 late-instar

G. incorrupta caterpillars from a natural population near

Oracle, AZ, USA in April 2007. Because of the caterpil-

lars’ varied and unknown feeding histories prior to col-

lection and the possibility that the PA feeding experience

modifies subsequent feeding response to PAs (Bernays

et al. 2003), we manipulated their feeding experience prior

to the feeding assay by individually confining the cater-

pillars in 162.7 ml plastic cups, with half randomly

assigned to Senecio longilobus (PA-containing plant), and

the other 60 assigned to Malva parviflora (PA-free plant)

for 24 h. Next, we placed all caterpillars that had fed on

their assigned host plant (N = 116) individually into clean

cups, each with an impaled PA-treated glass fiber disc (as

described above), and allowed them to feed for 24 h. After
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this PA-feeding assay period, the glass fiber discs were

removed for drying and weighing (as described above), and

the caterpillars were weighed, dissected, and examined

under 509 magnification for the presence of endoparasi-

toids. Dissections mostly revealed caterpillars lacking any

signs of parasitism (N = 96), a set of caterpillars contain-

ing a single early-instar tachinid larva surrounded by

melanized tissue and often in conjunction with a single

macrotype tachinid egg on the caterpillar’s outer exoskel-

eton (N = 7), and a set of caterpillars harboring a single

macrotype tachinid egg but no embedded tachinid larva

(N = 13). In analyses comparing the PA feeding responses

of parasitized and unparasitized caterpillars, the latter two

categories were pooled to create a category of caterpillars

assayed at early stages of parasitoid development. We

analyzed the effects of parasitism (yes, no), pre-assay diet

(Senecio or Malva), caterpillar mass, and their interactions

with ANCOVA (JMP 7.0). The response variable was the

log-transformed mass of glass fiber disc consumed.

Host plant selection after natural parasitism

To compare host plant selection of parasitized and unpar-

asitized caterpillars, field collected G. incorrupta were

given a choice between three chemically distinct host plant

species. Fifty individuals were collected from a natural

population near Oracle, AZ, USA in April 2009 and then

brought back to the laboratory at the University of Arizona.

At the lab, caterpillars were given a choice between

excised leaves or uprooted individuals of three field-col-

lected host plants: Plantago patagonica (Plantaginaceae),

Plagiobothrys arizonicus (Boraginaceae), and Malva par-

viflora (Malvaceae). These plants are chemically distinct

from each other. Plantago patagonica contains compounds

of the monoterpene derived, iridoid glycosides (M.D.

Bowers, personal communication). Plagiobothrys arizoni-

cus contains PAs (Hartmann et al. 2004), and M. parviflora

contains high levels of antioxidant flavonoids and pheno-

lics (Wang et al. 2001; Afolayan et al. 2008). Previous

studies with plants containing iridoid glycosides suggested

that these compounds may confer resistance to parasitism

for G. incorrupta (Singer and Stireman 2003). Resistance

to parasitism has been shown for dietary PAs (Singer et al.

2009), and M. parviflora, which is known to have high

protein and high antioxidant levels, has been shown to

support superior growth and development of G. incorrupta

(Singer 2001; Singer and Stireman 2003; Singer et al.

2004). Individuals were housed in plastic 167.2 ml cups

with a weighed amount of each of the three plants. After

36 h, caterpillars were removed from their cups, and the

dry mass of the remaining plant material from each cup

was obtained. We calculated the dry mass consumed of

each plant by estimating the initial plant dry mass using a

wet-to-dry conversion curve. This was created by weighing

a sample amount of each plant when harvested, and again

after drying (N = 20). A subset of caterpillars (N = 25)

was dissected in order to ascertain parasitism status during

the feeding assay. From caterpillar dissections showing

first-instar maggots and the number of days to adult fly

eclosion among nondissected individuals, we determined

that fly larvae were at a very early ontogenetic stage during

these caterpillar feeding assays. This experiment therefore

reflects caterpillar feeding preference at an early stage of

parasitoid infection.

Because we were not able to meet the requirements of

normality needed to analyze parametric statistics using the

full dataset, due to frequent zeros (caterpillars eating only

one or two of the three choices), we used three separate

analyses to test for differences in the feeding responses of

parasitized and unparasitized caterpillars. First, to test

qualitatively for associations between parasitism status and

the occurrence of feeding on the three different host plants,

we categorized feeding data as presence or absence of

consumption. Chi-square contingency tables were used to

test for associations between the presence/absence of con-

sumption on each plant and parasitism status (yes, no).

Second, we tested for differences in the amount of plant

material consumed once feeding was initiated, so data

points with zeros (no feeding) were not included in this

analysis. This subset of data met the requirements for nor-

mality following square root transformation of the con-

sumption of P. arizonicus and M. parviflora. The mass of

P. patagonica consumed could not be normalized and was

not included in this analysis. Data were analyzed in SAS

using ANOVA (PROC GLM), with the dry mass of each

plant consumed used as the response variable and parasit-

ism status (yes, no) used as the predictor variable. In the

third analysis, we analyzed feeding data separately for each

parasitoid taxon, since our parasitism data included both

hymenopteran and dipteran parasitoids. Unlike the analysis

of host plant consumption with all parasitoids included,

feeding data for all plants met the requirements for nor-

mality when parasitoid species were analyzed separately.

These data were analyzed in SAS using ANOVA (PROC

GLM), with the dry mass of each plant consumed used as

the response variable and parasitism status (yes, no) used as

the predictor variable. Differences between means were

identified using Tukey’s multiple range test with a = 0.05.

Results

Laboratory experiments

PA consumption by G. incorrupta was affected by the

parasitism treatment (F3,109 = 10.58, P \ 0.0001, N = 113),
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and the interaction between parasitism and time

(F3,109 = 5.00, P = 0.0274, N = 113, Fig. 1). Parasitized

caterpillars at the later phase of the infection consumed

greater than twice as much of the PA-treated fiber disc as

the parasitized caterpillars in the early infection phase did.

In addition, PA consumption differed between the late

parasitized individuals and the late unparasitized individ-

uals. This is in keeping with previous evidence for self-

medication behavior (Singer et al. 2009), and demonstrates

for the first time that increased PA ingestion induced by

larval parasitoids begins at least 96 h after parasitoid ovi-

position. The Tukey test showed no significant difference

in PA consumption between the early parasitized and early

unparasitized groups (Fig. 1). When consumption was

analyzed based upon the number of eggs oviposited, there

were still significant differences in consumption between

the early-infection and late-infection groups, regardless of

egg number (one egg, F3,33 = 27.05, P \ 0.0001, N = 37;

two eggs, F3,13 = 10.01, P \ 0.0011, N = 17). Interest-

ingly, the effect size was larger for caterpillars with one

egg versus two eggs (18.33 vs. 13.72).

When we analyzed the feeding response to PAs after

caterpillars were given an immune challenge, we found

that bead-injected caterpillars consumed significantly less

PA fiber disc than sham-injected and control groups

(F8,47 = 6.02, P \ 0.0001, N = 56, Fig. 2). The Tukey

test showed a significant difference in consumption among

all three groups. We detected no effect of caterpillar family

on PA consumption (F8,47 = 1.20, P = 0.3088, N = 56).

We detected no significant difference in bead melan-

ization between individuals feeding on the high-PA (0.1%),

low-PA (0.01%), and control diets (F8,45 = 1.30,

P [ 0.2682, N = 54, Fig. 3). Likewise, we detected no

effect of caterpillar family on immune response

(F8,47 = 2.06, P = 0.1391, N = 54).

Field/lab experiments

Naturally parasitized caterpillars harboring early develop-

mental stages of tachinid larvae consumed significantly

less of the PA-treated fiber disc than did unparasitized

caterpillars (F7,108 = 5.35, P = 0.0221, N = 116, Fig. 4).

We failed to detect effects of host plant conditioning

(F7,108 = 2.42, P = 0.1228, N = 116) and caterpillar mass

(F7,108 = 0.0043, P = 0.9476, N = 116) on PA con-

sumption. Finally, the interaction between caterpillar mass,

host plant conditioning, and parasitism status did not affect

PA consumption (F7,108 = 0.8622, P = 0.3552, N = 116).

Fig. 1 Contrasting amounts of PA fiber disc consumed by

G. incorrupta at early and late stages of parasitoid infection. There

is a significant interaction between treatment (parasitized vs. unpar-

asitized) and infection phase (early vs. late). Error bars represent the

standard error of the mean

Fig. 2 Comparison of the mean amounts of PA fiber disc consumed

by bead-injected, sham-injected (no beads) and control caterpillars.

Nonidentical letters above bars indicate significant differences

between treatment groups. Error bars represent the standard error

of the mean

Fig. 3 Mean melanization scores for individuals of G. incorrupta
consuming low (0.01%), high (0.1%), and control (0.0%) levels of

PAs. Error bars represent one standard deviation of the mean
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In the second field experiment, we tested for associa-

tions between parasitism status and the presence of feeding

on each of the three host plants. Two-dimensional contin-

gency tables showed no association between parasitism

status and the presence of feeding on each of the plants,

P. arizonicus (v2 = 0.2110, df = 1, P = 0.6460), P. pata-

gonica (v2 = 0.2110, df = 1, P = 0.6460), and M. parvifl-

ora (v2 = 0.7500, df = 1, P = 0.3865). In the subset of data

that included measurable host plant consumption, parasit-

ized individuals consumed significantly more M. parviflora

than unparasitized individuals did (F1,30 = 4.96, P = 0.034,

N = 32, Fig. 5), but parasitized and unparasitized individ-

uals did not differ in their consumptions of P. arizonicus

(F1,33 = 2.66, P = 0.113, N = 35, Fig. 5). When caterpil-

lars parasitized by wasps (Cotesia nr. phobetri) were ana-

lyzed separately from caterpillars parasitized by flies

(Chetogena spp.), we found feeding differences specific to

each parasitoid type. The wasp-parasitized caterpillars

consumed significantly more M. parviflora than did unpar-

asitized caterpillars (F1,26 = 11.57, P = 0.002, N = 28).

However, there were no significant differences in con-

sumption between wasp-parasitized and unparasitized cat-

erpillars for P. arizonicus (F1,9 = 0.68, P = 0.432, N = 11)

and P. patagonica (F1,29 = 0.07, P = 0.794, N = 31). In

contrast, the fly-parasitized caterpillars consumed signifi-

cantly more P. patagonica than did unparasitized caterpillars

(F1,28 = 5.37, P = 0.03, N = 30), with no significant dif-

ferences in the consumption of M. parviflora (F1,23 = 0.42,

P = 0.523, N = 25) and P. arizonicus (F1,9 = 0.70,

P = 0.426, N = 11).

Discussion

The results of the PA-feeding experiments show changes in

pharmacophagous behavior over the course of parasitoid

infection. Both parasitized and immune-challenged G. in-

corrupta caterpillars reduced their consumption of pyrro-

lizidine alkaloids during the early stages of the parasitoid

infection. However, the increased ingestion of PAs by

caterpillars at a later stage indicates that the onset of self-

medication behavior occurs at least 96 h after parasitoid

oviposition. Based on similar PA-feeding responses of

caterpillars at early stages of infection (lab experiments)

and those harboring parasitoids at early developmental

stages (field/lab experiments), we suggest that this switch

in feeding behavior is induced by a particular ontogenetic

stage of the parasitoid larva, or by some correlate of par-

asitoid development. Because the number of fly eggs did

not affect PA feeding in this study, we suggest that varia-

tion in parasitoid development within the host is the most

likely source of variation in PA feeding seen in previous

experiments (Singer et al. 2009).

Our results also provide some insight into the functional

significance of avoiding PA consumption during early

stages of parasitoid infection. Since previous work shows

that PA consumption confers a higher survivorship to

parasitized caterpillars (Singer et al. 2009), and increased

PA consumption is associated with late-phase (this study)

and late-stage infections (Singer et al. 2009), the reduced

acceptability of PAs at the early infection stage suggests

that G. incorrupta caterpillars avoid PAs either because of

detrimental effects of the PAs, or because they seek

alternative compounds that may be of greater benefit. Two

results from the above experiments support the latter

explanation. Firstly, injection assays showed that there was

no detrimental effect of PAs on immune performance, and

secondly, parasitized caterpillars in the host plant choice

experiment showed increased consumption of alternative

Fig. 4 Comparison of the amount of PA fiber disc consumed by

early-stage parasitized and unparasitized caterpillars collected from

the field. Error bars represent the standard error of the mean

Fig. 5 Comparison of the amounts of three different plants consumed

by early-stage parasitized and unparasitized caterpillars collected

from the field. Error bars represent the standard error of the mean
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host plants. Work in other systems, where the strength of

the immune response has been shown to vary depending on

the host plant, points to some possible immune-enhancing

compounds of alternative host plants (Ojala et al. 2005;

Yang et al. 2008; Smilanich et al. 2009a). For example, in

the arctiid caterpillar Parasemia plantaginis, immunity is

highest when feeding on plants that have high concentra-

tions of antioxidants (Ojala et al. 2005). Since both

M. parviflora and P. patagonica contain high levels of

antioxidants, it is possible that choosing these hosts over

PA plants during early stages of parasitoid infection aids

the immune response by scouring destructive free radicals

(Ojala et al. 2005; Buyukguzel 2009). However, it should

also be noted that sustained PA consumption reduces the

survival of unparasitized G. incorrupta caterpillars (Singer

et al. 2009), so a direct physiological cost of PA ingestion

cannot be ruled out as an explanation for the avoidance of

PA feeding by newly infected, and possibly physiologically

stressed, caterpillars.

Identifying the fitness effects of ingesting antioxidant-

rich hosts may be particularly fruitful in studies integrating

self-medication and immunity. Malva parviflora offers not

only high-quality food to G. incorrupta (Singer and

Stireman 2003), but also high concentrations of antioxi-

dants, and antimicrobial activity in the leaves and seeds

(Afolayan et al. 2008; Wang et al. 2001). In particular,

M. parviflora has high concentrations of flavonoids, which

exhibit free radical scavenging properties that are thought

to contribute to the wound-healing properties in humans for

which M. parviflora has traditionally been used (Afolayan

et al. 2008; Shale et al. 1999). Parasitized individuals of

G. incorrupta may benefit from these properties, since the

melanization process produces free radicals which are

harmful to parasitoid larvae but are also potentially harmful

to G. incorrupta. In addition, during parasitism, the cater-

pillar’s cuticle is punctured by the wasp ovipositor, or by

the burrowing fly larva, leaving a wound on the caterpil-

lar’s body. The antimicrobial properties of M. parviflora

may prevent the secondary infection of wounds by

pathogens.

The increased consumption of the nutritious plant

M. parviflora at the early infection stage was driven by the

wasp-parasitized caterpillars and was not significantly

higher for the fly-parasitized caterpillars. It may be that

gregarious parasitoid wasps are especially taxing to the

immune response, stimulating caterpillars to seek plants

that can bolster it or ameliorate its harmful side-effects. A

feeding strategy that aids the immune system may not be

effective against tachinid parasitoids because of the ability

of some species to form breathing tubes using the host’s

encapsulation response (Bailey and Zuk 2008). Fly-para-

sitized caterpillars showed a different feeding behavior,

increasing their consumption of P. patagonica, a plant that

contains iridoid glycosides. Like PAs, iridoid glycosides

are not harmful to the immune response of G. incorrupta

(Smilanich 2008); however, unlike the PA plant (P. ari-

zonicus), the iridoid glycoside-containing P. patagonica

was still eaten by parasitized caterpillars at the early

infection stage. This preference for P. patagonica in the

early infection stage is not understood, but may reflect self-

medication similar to that shown for PAs. Previous work

with G. incorrupta demonstrated a heightened gustatory

response to iridoid glycosides in parasitized individuals,

indicating a possible resistance response to consuming

plants with these compounds (Bernays and Singer 2005).

It is also possible that G. incorrupta uses plant pigments

to increase its melanization strength. Pigments such as

carotenoids act to add coloration to the insect integument

(Sandre et al. 2007), and a general association between

dark integument and a reduced likelihood of mortality from

parasitoids has been observed in a natural assemblage of

tree-feeding caterpillars (Barbosa and Caldas 2007). In

addition, Ojala et al. (2005) found that arctiid larvae con-

suming plant diets with high carotenoid concentrations had

increased melanization responses. Thus, it is possible that

caterpillars use plant pigments to enhance the immune

response. Additionally, since M. parviflora is a high-qual-

ity host for G. incorrupta, any positive effects on the

immune response may act indirectly by increasing overall

physiological condition, such as body mass and growth

rates (Srygley et al. 2009; Bukovinszky et al. 2009).

Finally, the immune response is a resource-costly process

(Schmid-Hempel and Ebert 2003), so parasitized caterpil-

lars may select highly nutritious plants to recoup protein

losses from mounting a response (Lee et al. 2006; Povey

et al. 2009).

Since the effects of antioxidant and antimicrobial

properties of M. parviflora on the immune response of

G. incorrupta are untested, the possibility remains that the

stimulus to consume more nutritious plants is induced by

parasitoids. Manipulation of host behavior by parasites has

been shown in many invertebrate systems (Medoc and

Beisel 2009). In parasitoid–host interactions, if there is a

high risk of secondary infection by pathogens, then

inducing the host caterpillar to prefer a plant with high

levels of antioxidant and antimicrobial activity would be

advantageous to the developing parasitoid. Moreover,

many studies have demonstrated a positive correlation

between high herbivore performance on a particular host

plant and parasitoid fitness (Vinson and Iwantsch 1980;

Benrey and Denno 1997; Thompson and Redak 2008).

Host manipulation seems most likely for highly specialized

parasitoids, such as Cotesia nr. phobetri, which was indeed

associated with feeding on high-quality M. parviflora

plants in this study. In contrast, the fly parasitoids in this

study are host generalists (Stireman and Singer 2002), and
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are thus less likely to have specialized adaptations that are

presumably needed for host manipulation.

In conclusion, these findings address several hypothe-

sized relationships between diet choice and immune

response. While previous studies of self-medication

behavior by Grammia incorrupta caterpillars (Bernays

and Singer 2005; Singer et al. 2009) implied that

increased PA intake by parasitized caterpillars is mediated

by changes in the taste system, they did not address the

mechanism by which dietary PAs confer resistance

against parasitoids. Because a variety of recent studies of

other systems have highlighted varied effects of diet on

the immune responses of insect herbivores (Ojala et al.

2005; Kapari et al. 2006; Haviola et al. 2007; Klemola

et al. 2007, 2008; Lee et al. 2008; Smilanich et al. 2009a;

Bukovinszky et al. 2009), our experiments addressed the

role of immunological resistance in relation to PA self-

medication. Behavioral and immunological assays repor-

ted here argue against the notion that the caterpillar

immune system mediates antiparasitoid resistance con-

ferred by dietary PAs. Additionally, there is no evidence

that dietary PA interferes with immunological resistance

in G. incorrupta. An alternative hypothesis, supported by

our data, is that G. incorrupta uses two separate lines of

defense against parasitoids. The first is the immune

response, which begins immediately upon parasitoid

infection, and does not involve increased ingestion of

medicinal PAs. Rather, other plant chemicals, such as

primary nutrients, antioxidants or pigments, might be

employed to bolster immunity, as plants with such

chemicals were especially acceptable to newly parasitized

caterpillars. The second line of defense is self-medication

via elevated ingestion of PAs, activated only after the

early stages of parasitoid infection and presumably when

the immune response is unsuccessful. Dietary PAs, which

are sequestered in the hemolymph (Hartmann et al. 2004,

2005), most likely confer resistance through direct toxicity

to hemolymph-feeding larval parasitoids. What is clear so

far is that a polyphagous caterpillar exhibits both speci-

ficity and plasticity depending upon the taxon of parasit-

oid, the stage of infection, and host plant chemistry.

These findings reveal previously unexplored dimensions

in the network of variables driving herbivore host plant

choice. While a high level of complexity in ecological

interactions is expected, empirical data demonstrating

these interactions is generally lacking, especially in regard

to foraging behavior (Abrams 2010). An important goal for

future studies will be to investigate the effect of com-

pounds such as flavonoids and antioxidants on the immune

response of G. incorrupta, as well as to achieve a better

understanding of the impetus for host switching over the

course of parasitoid development. Further investigation is

also needed to understand the function of PA avoidance

and preference for alternative host plants or compounds in

the early stages of parasitoid infection.
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